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A TECHNIQJJE FOR DETERMINING PLANETARY ATMOSPHERE 

STRUC- FROM MEASURED ACCELERATIONS 

OF AN ENTRY VEHICLE 

By Victor L. Peterson 

Ames Research Center 
Moffett F ie ld ,  C a l i f .  

SUMMARY 

A detai led procedure has been developed f o r  obtaining the  densi ty  and 
pressure s t ructure  of a planetary atmosphere from measurements of accelera- 
t i o n s  experienced by a vehicle making an uncontrolled en t ry  in to  the atmos- 
Zhere. It has been shown t h a t  considerable s implif icat ion i n  the method i s  
possible and a poten t ia l ly  large source of e r r o r  i s  eliminated if the  
accelerometers are  car r ied  by a spherical ly  shaped vehicle .  

Sample calculat ions were made t o  i l l u s t r a t e  how wel l  extreme model 
atmospheres f o r  Mars could be defined by t h i s  technique. Results of the  c a l -  
culat ions showed t h a t  accelerometers designed t o  measure over t h e  e n t i r e  range 
of expected accelerat ions with an accuracy of 0 . 1  percent of f u l l - s c a l e  capa- 
b i l i t y  would not provide s u f f i c i e n t l y  precise  data t o  define a l l  of the atmos- 
pheres tha t  could be encountered within the possible extremes. If, however, 
the time period over which large e r r o r s  i n  measured accelerat ions a re  encoun- 
te red  i s  reduced by means of an independent method f o r  defining the  atmosphere 
during the portion of the  f l i g h t  when the  speed i s  re l .a t ively low or the  
acceleration measurements a re  improved by resort ing t o  a dual  system i n  which 
one s e t  of instruments measures over the e n t i r e  range of expected accelera- 
t i o n s  and the other over a more l imited range,then any of the model atmos- 
pheres within the extremes can be determined reasonably wel l  over extensive 
ranges of a l t i t u d e .  It i s  concluded tha t  the method i s  worthy of f u r t h e r  
consideration as a means f o r  surveying the atmospheres of the planets .  

INTRODUCTION 

An objective of ear ly  programs t o  explore the  planets  w i l l  probably be t o  
measure the propert ies  of t h e i r  surrounding atmospheres. Information of t h i s  
nature i s  c e r t a i n l y  needed since current estimates of the propert ies  of plane- 
t a r y  atmospheres, which are  based on astronomical observations, a re  not ade- 
quate t o  permit the design of e f f i c i e n t  advanced en t ry  vehicles .  

A number of methods f o r  measuring the  var ia t ions  of densi ty  and pressure 
with a l t i t u d e  i n  an atmosphere have been devised. Descriptions of some of 
those which have been used t o  survey t h e  Earth 's  atmosphere are  reported i n  



references 1 and 2. I n  one of the methods t h e  ambient densi ty  i s  determined 
from measurements of the  accelerat ions experienced by a body i n  f r e e  f a l l .  A 
re la t ionship between accelerat ions due t o  aerodynamic loads and l o c a l  atmos- 
phere densi ty  can be expressed i n  t e r m s  of the  aerodynamic charac te r i s t ics  of 
the body. The aerodynamics of the body are  given, of course, e i t h e r  by theory 
or by experiments. 
surveying the Earth’ s atmosphere , the  t r a j e c t o r y  of the  body i s  obtained 
e i t h e r  by t racking t h e  f l i g h t  with instruments not aboard t h e  vehicle or  by 
reconstruction of the t r a j e c t o r y  using t h e  equations of motion and the  meas- 
ured accelerat ions.  Thus, from the time h i s t o r y  of ambient density given by 
the measured accelerat ions and the  time h is tory  of a l t i t u d e  given by the  t r a -  
jectory data ,  a record of densi ty  var ia t ion  with a l t i t u d e  can be constructed. 

In  the application of t h i s  technique t o  the  problem of 

In  reference 3 the  suggestion w a s  made t o  apply the general  technique of 
deducing atmosphere s t ruc ture  from measurements of vehicle accelerations t o  
the  problem of surveying the  atmospheres of planets  other than Earth. It w a s  
shown i n  reference 3 t h a t  i n  addition t o  ambient densi ty ,  the  pressure,  the  
product of gas constant and temperature, and t h e  a l t i t u d e  a l l  could be 
obtained from a time h i s t o r y  of the  accelerat ions experienced by a vehicle . 
making a high-speed entry in to  a planetary atmosphere. It w a s  observed, how- 
ever, t h a t  if a t t i t u d e  control  were not provided, then the  e f f e c t s  of angle- 
of -attack o s c i l l a t i o n s  on the measurements could be s igni f icant  and, i n  f a c t  , 
probably would require the  addi t ional  measurement of a continuous record of 
vehicle a t t i t u d e .  

The purpose of the present study i s  t o  amplify and extend some of the 
ideas presented i n  reference 3. I n  p a r t i c u l a r ,  a de ta i led  procedure f o r  
obtaining atmosphere s t ruc ture  from measurements made by on-board accelerom- 
e t e r s  i s  developed.’ The equations a re  used t o  show how the select ion of a 
p a r t i c u l a r  body configuration s implif ies  t h e  technique by completely elimi - 
nating the  need f o r  considering body a t t i t u d e .  F ina l ly ,  some estimates a re  
made of the  inaccuracies i n  atmosphere d e f i n i t i o n  due t o  e r r o r s  in  measuring 
accelerat ions.  

NOTATION 

a 

ax Y ay Y a z  

A 

2 r e s u l t a n t  accelerat ion due t o  aerodynamic loads ,  Jax2 + ay2 + az 

accelerat ions due t o  aerodynamic loads along the x, y,  z body 
axes , respect ively (eqs . ( 1) ) 

reference area f o r  aerodynamic coef f ic ien ts  

~- - .  ~.~ 

lPortions of t h e  method presented herein have been derived previously i n  
references 1 and 2 i n  which r e s u l t s  of surveys of the Earth’s  atmosphere using 
bodies i n  low-speed f r e e  f a l l  a re  reported.  However, the  method i s  redevel- 
oped completely i n  t h e  present study f o r  c l a r i t y  and completeness. 
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axial-force coef f ic ien t  a x i a l  force 
1. pV2A 2 

drag force 

1 pV2A 
2 

drag -f orce coef f ic ien t  , 

l i f t  force 
1 l i f t  -f orce coef f ic ien t  CL 

pV2A 

normal force 

2 pV2A 
normal-force coef f ic ien t ,  

CN 1 

side force 
1 CY side-force coef f ic ien t ,  

pV2A 

g 

h 

HP 

m 

P 

r 

R 

l o c a l  accelerat ion of gravi ty  

a l t i t u d e  above planet surface 

l o c a l  atmosphere scale  height (eq .  ( 6 ) )  

vehicle mass 

ambient pressure i n  atmosphere 

distance from planet center  t o  vehicle m a s s  center  

gas constant f o r  atmosphere gas mixture, - P 
PT 

time 

ambient temperature of atmosphere 

f l i g h t  speed 

x,y,z 

e 

body axes with o r i g i n  at vehicle m a s s  center  ( f i g .  (1)) 

f l i g h t  -path angle measured r e l a t i v e  t o  l o c a l  horizontal  
I -  - _  

P ambient densl ty  of atmosphere 

0 angle of body incidence ( f i g .  (1)) 

cp angle of body roll ( f i g .  (1)) 
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Sub sc r i p t  s 

E quant i ty  evaluated at en t ry  

o quant i ty  evaluated a t  planet  surface 

ANALYSIS 

The t r a j e c t o r y  of a body enter ing a planetary atmosphere i s  sens i t ive  t o  
the  va r i a t ion  of atmosphere densi ty  with a l t i t u d e .  Normally, t he  densi ty  
s t ruc ture  of an atmosphere i s  presumed known and the  t r a j e c t o r y  of a body i s  
calculated using given conditions a t  en t ry .  I n  reference 3 a t t en t ion  w a s  
focused on the  p o s s i b i l i t y  of reversing t h e  s i t u a t i o n  i n  order t o  determine an 
unknown atmosphere s t ruc tu re  from measurements of t h e  accelerat ions experi-  
enced by a vehicle  f l y i n g  through the  atmosphere i n  question. The concept w a s  
not examined i n  d e t a i l  i n  reference 3, however. 

The purpose of t h i s  ana lys i s  i s  t o  develop i n  more d e t a i l  t he  technique 
f o r  ca lcu la t ing  atmosphere dens i ty ,  pressure, and sca le  height as functions of 
a l t i t u d e  from measurements made by accelerometers. I n  addi t ion,  it w i l l  be 
shown t h a t  t he  method can be s ign i f i can t ly  s implif ied and t h a t  a source of 
po ten t i a l ly  large e r r o r s  can be eliminated completely by t h e  use of a p a r t i c -  
u l a r  vehicle  configurat ion.  F ina l ly ,  r e s u l t s  of ca lcu la t ions  of the  inaccura- 
c i e s  i n  t h e  de f in i t i ons  of atmospheres due t o  e r r o r s  i n  accelerometer 
measurements a re  presented. 

Method f o r  Obtaining Atmosphere Structure  

F i r s t ,  equations w i l l  be presented r e l a t i n g  t h e  dens i ty ,  pressure,  sca le  
height ,  and a l t i t u d e  t o  the  t r a j e c t o r y  var iab les ,  speed, path angle, and t ime.  
Then, methods f o r  determining the  t r a j e c t o r y  from acce lera t ion  measurements 
w i l l  be discussed. It w i l l  be seen t h a t  a l l  of t he  quan t i t i e s  can be de t e r -  
mined without specifying t h e  chemical composition of t h e  atmosphere and without 
assuming an adiabat ic  o r  isothermal atmosphere. 

Consider a body a t  an a r b i t r a r y  a t t i t u d e  r e l a t i v e  t o  the  ve loc i ty  vector 
and assume t h a t  accelerometers located within t h e  body a t  the  center  of m a s s  
a re  a l ined with a s e t  of x ,  y,  z body axes.  The axes and angles a re  defined 
i n  f igure  1. Let t h e  accelerometers be designed t o  measure both pos i t ive  and 
negative values .  The instruments w i l l  react  only t o  aerodynamic forces  when 
the  body en te r s  an atmosphere so  t h a t  t he  governing equations are  
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Any one of equations (1) can be solved f o r  dens i ty  
a force  coe f f i c i en t ,  some constants,  and a measured acce lera t ion .  The l a rges t  
accelerat ions w i l l  general ly  be i n  the  d i r ec t ion  of t he  a x i a l  force so t h a t  it 
i s  reasonable t o  solve for densi ty  from the  first of equations (1). 
r e s u l t  i s  

p i n  terms of t he  speed, 

The 

The atmosphere pressure can be obtained d i r e c t l y  by in tegra t ing  the  
barometric e quat ion 

dp = -gp dh 

t o  give 

f p  dp = -sh gP 
pE hE 

The r a t e  of change of a l t i t u d e  with time i s  given by 

- _  - -V s i n  0 
d t  

Equation ( 3 )  can be used t o  wr i te  t he  pressure r e l a t i o n  

P- ,=$  gp V s i n  0 d t  

( 3 )  

(4) 

The time i s  measured from the  moment when the  accelerometers f i rs t  record 
usable readings.  It i s  an t ic ipa ted  t h a t  t h e  accelerometers selected f o r  use 
w i l l  measure s m a l l  values of accelerat ion r e l a t i v e  t o  t h e  maximum encountered 
along the  t r a j e c t o r y .  I n  t h i s  case,  t he  port ion of t h e  planetary atmosphere 
above the  a l t i t u d e  corresponding t o  zero time w i l l  be s m a l l  r e l a t i v e  t o  the  
t o t a l  atmosphere. For these  circumstances, t h e  pressure a t  time zero can be 
neglected so t h a t  equation ( 4 )  can be wr i t ten  as follows: 

r t  
p = jo gp V s i n  0 d t  

. . .. . . . 

( 5 )  
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The l o c a l  densi ty  scale  height i s  given 

RT 
g 

Hp = - 

I f  it i s  assumed t h a t  t h e  ambient atmosphere 
gas, then t h e  following re la t ionship  between 

behaves as a thermally per fec t  
thermodynamic var iables  i s  v a l i d  

Substi tuting t h e  above r e l a t i o n  i n t o  equation ( 6 )  leads t o  an equation f o r  
densi ty  scale height i n  terms of pressure and densi ty  

F ina l ly ,  t h e  a l t i t u d e  i s  obtained from the  integrat ion of equation ( 3 ) .  
The r e s u l t  i s  

V s i n  8 d t  ( 8 )  it h = h E  - 

Equations (2), ( 5 ) ,  (7), and (8)  cons t i tu te  the  r e l a t i o n s  l inking the  
atmosphere s t ruc ture  t o  the  t r a j e c t o r y  var iab les .  It i s  noted t h a t  i n  addi- 
t i o n  t o  the  e x p l i c i t  dependence on V, 8 ,  and t t h e r e  i s  an implici t  depend- 
ence of densi ty ,  pressure,  scale  height,  and a l t i t u d e  on vehicle a t t i t u d e  
through the  a x i a l  force coef f ic ien t  i n  equation ( 2 ) .  
determine the  time h i s t o r y  of the  speed V and path angle 8 .  The atmosphere 
s t ruc ture  w i l l  be defined when t h i s  i s  accomplished. 

The problem now i s  t o  

The equations governing the  t r a j e c t o r y  of a body entering a spherical ly  
symmetric nonrotating planetary atmosphere can be wr i t ten  as follows: 

The f i r s t  of these equations expresses a balance of forces  along the  f l i g h t  
path and t h e  second expresses a balance of forces  i n  the  d i rec t ion  normal t o  
the  f l i g h t  path.  Reference t o  equations (1) shows t h a t  the  dynamic pressure 
( l/2)pV2 can be wr i t ten  i n  terms of one of the accelerometer readings, say 
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Subst i tut ing t h i s  r e l a t i o n  f o r  t h e  dynamic pressure i n  equations ( 9 )  gives 

Equations (10) cons t i tu te  two coupled, f i r s t  -order d i f f e r e n t i a l  equations f o r  
the q u a n t i t i e s  V and 8 as functions of time. To complete the  system of 
necessary equations, r e l a t i o n s  must be given f o r  t h e  dis tance 
planet center  t o  the  vehicle  and f o r  the  l o c a l  gravi ty  g .  These a re  

r from the 

The three  i n i t i a l  conditions required f o r  solving the system of equations are  
the  speed, path angle, and a l t i t u d e  a t  time zero.  In  addi t ion t o  the  i n i t i a l  
conditions it i s  evident t h a t  the  quant i t ies  must be given 
as functions of t ime.  Attention w i l l  now be directed toward showing how time 
h i s t o r i e s  of the  aerodynamic coef f ic ien ts  f o r  a general  vehicle shape can be 
obtained. 

C,/CA and CL/CA 

The aerodynamic coef f ic ien ts  a re  , of course, not e x p l i c i t l y  dependent on 
time . They are  , however, generally dependent on vehicle a t t i t u d e  , Mach number, 
or speed and Reynolds number each of which i s  re la ted  t o  t ime. 
of Mach number and Reynolds number with time can be determined approximately 
from the  calculat ion of the t r a j e c t o r y  so that  no ser ious problems a r e  f o r e -  
seen i n  accounting f o r  var ia t ions  of aerodynamic coef f ic ien ts  with these 
parameters. A major problem does e x i s t  , however , by v i r t u e  of the f a c t  t h a t  
aerodynamic coef f ic ien ts  can be strongly dependent on vehicle a t t i t u d e  r e l a -  
t i v e  t o  the ve loc i ty  vector and t h a t  excursions of a t t i t u d e  from a mean can 
be large during a passive e n t r y .  It i s  apparent t h a t  e i t h e r  a t t i t u d e  must be 
measured as a function of time or e l s e  vehicle a t t i t u d e  considerations must be 
eliminated from the  problem. Consider f i rs t  t h e  p o s s i b i l i t y  of deducing 
a t t i t u d e  as a funct ion of time from the  accelerometer measurements. 

The var ia t ions  

The vehicle a t t i t u d e  r e l a t i v e  t o  the  ve loc i ty  vector can be expressed i n  
terms of two angles; incidence angle 0 and roll angle cp. (See f i g .  (1) f o r  
d e f i n i t i o n  of these angles . )  
h i s t o r y  of the  x, y ,  and z accelerat ions i n  combination with aerodynamic 
da ta  f o r  the  chosen configuration experimentally measured i n  ground based 
f a c i l i t i e s .  Tine procedure f o r  doing t h i s  i s  based on the  f a c t  t h a t  there  a re  
unique values of 0 and cp f o r  each combination of CN/CA and CY/CA. Thus, a 
p l o t  of the  var ia t ion  of CN/CA with CY/CA showing l i n e s  of constant 

These two angles can be determined from a time 



0 and cp can be prepared from experimental d a t a .  If the  x, y ,  z accelerom- 
e t e r  outputs a re  recorded simultaneously at any in s t an t  of time, then the  
values of C N / C ~  and CY/CA needed t o  en te r  t he  p l o t  a re  given by az/ax and 
?/ax, respec t ive ly  ( r a t i o  eqs .  (1) ) . Once incidence and r o l l  angles a re  
determined, t he  quan t i t i e s  
experimental da t a  or from r e s u l t s  of t h e o r e t i c a l  p red ic t ions .  
t h a t  t h i s  procedure f o r  obtaining time h i s t o r i e s  of t he  aerodynamic quan t i t i e s  
i s  subject t o  a number of sources of e r r o r  and t h a t  a r e l a t i v e l y  large amount 
of accelerometer da t a  would be needed t o  descr ibe  t h e  complete time h i s to ry  of 
t he  o s c i l l a t o r y  angles (5 and cp. It w i l l  be shown i n  t h e  next sect ion t h a t  
a l l  of t h e  problems brought about by having t o  measure time hiLstories of these  
o s c i l l a t o r y  angles can be eliminated by a vehicle  with spher ica l  ex terna l  
shape. 
w i l l  be discussed. 

C,/C, and CL/CA can be obtained from p l o t s  of 
It i s  obvious 

F i r s t  , however, a general  method f o r  solving the  t r a j e c t o r y  equations 

The method of solving the  t r a j e c t o r y  equations (eqs . (10) and (11)) i s  
not e n t i r e l y  straightforward since a l l  of t he  i n i t i a l  conditions a re  not known 
a p r i o r i .  For example, the  i n i t i a l  value of r ,  o r ,  equivalent ly ,  t he  a l t i -  
tude a t  time zero , would not be known. Knowledge of t he  a l t i t u d e  at t h e  f i n a l  
time can be used t o  solve i t e r a t i v e l y  f o r  t h e  i n i t i a l  a l t i t u d e ,  however. The 
f i n a l  a l t i t u d e  would, of course, be zero if the  t r a j e c t o r y  equations were 
integrated t o  t h e  time of vehicle  impact with the  planet  sur face .  Actually, 
t he  a l t i t u d e  at any one in s t an t  of time could be used instead of  a l t i t u d e  at 
en t ry  t o  obtain a unique solut ion t o  t he  equations.  

An i n t e re s t ing  and possibly usefu l  method f o r  deducing en t ry  angle i s  
suggested by t h e  foregoing. Since t h e  problem i s  governed by three  f i r s t -  
order d i f f e r e n t i a l  equations , th ree  i n i t i a l  conditions a re  required f o r  
obtaining a unique so lu t ion .  However, as discussed i n  connection with t h e  
i n i t i a l  a l t i t u d e  condition, not a l l  of t he  information used t o  e f f e c t  a unique 
solut ion has t o  apply at time zero.  This suggests t h e  p o s s i b i l i t y  of using 
ambient pressure measured by an independent technique ( e . g . ,  a pressure gage) 
at low a l t i t u d e  and low speed as an imposed condition from which en t ry  angle 
can be deduced. For example, suppose t h a t  en t ry  speed and f i n a l  a l t i t u d e  a re  
known and t h e  a l t i t u d e  and path angle of en t ry  a re  unknown. The procedure 
would be t o  se l ec t  a number of en t ry  angles a r b i t r a r i l y .  Corresponding t o  
these  choices the re  would be unique en t ry  a l t i t u d e s  sa t i s fy ing  the  f i n a l  a l t i -  
tude requirements. Also, unique h i s t o r i e s  of pressures  as funct ions of time 
and a l t i t u d e  would be obtained from equations ( 5 )  and ( 8 ) .  !The cor rec t  choice 
of en t ry  angle would be t h a t  which would give an ambient pressure at a pre-  
scribed time equal  t o  the  pressure measured by t h e  independent method. The 
accuracy t o  which en t ry  angle can be determined by t h i s  method depends primar- 
i l y  on the  accuracy of t he  pressures  given by the  independent techniques.  
Further consideration of t h i s  method is  beyond the  scope of t he  present study. 

Simplified Equations for a Spherical  Entry Body 

All complications and at tendant  inaccuracies r e su l t i ng  from having t o  
consider va r i a t ions  of aerodynamic coe f f i c i en t s  with vehicle  a t t i t u d e  can be 
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eliminated e n t i r e l y  by a vehicle  with spherical  ex te rna l  shape. This f a c t  can 
be brought i n to  evidence by recognizing t h a t  t he  r e su l t an t  aerodynamic force  
on a sphere i n  any a t t i t u d e  i s  j u s t  t he  drag. I n  t h i s  case,  t he  accelerometer 
equations (eqs  . (1) ) can be combined t o  give 

a =Jax2 + 9 2  + az2 = - m 

The above equation can be solved f o r  dens i ty .  The r e s u l t ,  i n  terms of the  
r e su l t an t  accelerat ion,  i s  

p =(A) CDA a 

Note t h a t  the  aerodynamic term appearing i n  t h i s  equation, CD, i s  independent 
of body a t t i t u d e .  
shape which contains the  attitude-dependent a x i a l  force  coe f f i c i en t .  

This i s  i n  cont ras t  t o  equation (2 )  f o r  a n  a r b i t r a r y  body 

The equations governing the  t r a j e c t o r y  of a sphere a re  independent of 
aerodynamic coe f f i c i en t s .  
s e t t i n g  the  lift coef f ic ien t  t o  zero and by using equation (12). 
ing equations a re  given below. 

They are  obtained f rom equations ( 9 )  and (11) by 
The r e s u l t -  

V dQ - -  dt + ($ - 1) COS 8 = 0 

d r  -v s i n  e 
d t  
- 

Aerodynamic coe f f i c i en t s  now en te r  t he  problem only through t h e  drag 
coef f ic ien t  i n  equation (12 )  and 
a t t i t u d e .  I f  t he  vehicle  a t t i t u d e  i s  needed f o r  some o ther  purpose, it can be 
r ead i ly  obtained f r o m  t he  following equations: 

CD f o r  a sphere i s  not dependent upon body 

9 



t a n  cp = 3 
a, I 

The quadrants of t h e  angles a and cp can be obtained by considering the  
algebraic  s igns of t he  measured acce lera t ions .  

Er rors  i n  Atmosphere Def in i t ion  Due t o  
Inaccurately Measured Acce l e r a t  ions 

The d e f i n i t i o n  of a planetary atmosphere by the  method under considera- 
t i o n  i s  subject t o  e r r o r s  from a number of sources.  Extensive ana lys i s  i s  
required t o  i den t i fy  each of these sources, t o  es t imate  t h e  magnitudes associ-  
a ted with them, and then t o  determine t h e i r  ind iv idua l  and combined e f f e c t s  on 
the  d e f i n i t i o n  of an atmosphere. One of t he  f i rs t  sources of e r r o r  requir ing 
examination i s  the  accelerometers themselves from which t h e  da ta  a re  obtained. 
The r e s u l t s  of such an examination a re  reported i n  t h i s  sec t ion .  The present 
ana lys i s  i s  not intended t o  be exhaustive but r a the r  t o  i l l u s t r a t e  t he  accu- 
racy t o  which an atmosphere can be defined by a spher ica l ly  shaped en t ry  body 
with instruments having present ly  obtainable l e v e l s  of accuracy. 

The accuracy of  many kinds of accelerometers i s  within a given f r a c t i o n  
of t he  maximum value t h e  instrument can measure. O f  course , t h i s  means t h a t  
t he  measurement e r r o r s ,  i n  terms of percentages of l o c a l v a l u e s ,  a r e  smaller 
when the  instrument i s  operating near t he  upper end of i t s  range than near t he  
lower end. This s i t ua t ion  i s  unfavorable i n  the  present appl icat ion since t h e  
instrument must be designed t o  measure the  highest  acce le ra t ion  t h a t  might be 
encountered and ye t  f o r  the  bulk of  the  time of many en t ry  t r a j e c t o r i e s  the  
accelerat ions experienced by a body are  an order of magnitude o r  more lower 
then peak values .  Thus considerable emphasis i s  placed on the  ac tua l  magni- 
tudes of acce lera t ions  expected during an en t ry  and hence the  accuracy of 
atmosphere d e f i n i t i o n  w i l l  depend upon the  p a r t i c u l a r  p lane t ,  en t ry  conditions, 
and vehicle  cha rac t e r i s t i c s  being considered. 

The planet  Mars was selected f o r  t h i s  ana lys i s .  
Mars atmosphere believed t o  bracket t h a t  which ac tua l ly  surrounds the  planet  
are  presented i n  reference 4 .  The approximate ana ly t ic  forms of t he  m a x i m u m  
and minimum scale  height atmospheres given i n  reference 4 were used i n  the  
present study. 
of 50' and goo were chosen f o r  en t ry  condi t ions.  
spher ica l  en t ry  body had a constant value of  

Several  models of t he  

A t y p i c a l  probe en t ry  speed of 26,000 f t / s e c  and en t ry  angles 
It w a s  assumed t h a t  t he  

m/CDA of 0.25 s lug / f t2 .  

The t r a j e c t o r y  equations ( eqs .  (13) ) were programmed f o r  solut ion on an 
e lec t ronic  d i g i t a l  computer. In  addi t ion t o  having t h e  i n i t i a l  conditions,  
t he  problem w a s  programmed t o  accept a time h i s to ry  of r e su l t an t  vehicle  
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accelerat ion as  input .  To prepare sample accelerat ion h i s t o r i e s  f o r  study 
an exact record w a s  f i r s t  obtained from an en t ry  t r a j e c t o r y  computer program 
f o r  a pa r t i cu la r  model atmosphere and s e t  of en t ry  conditions;  then the  
desired e r ro r  f a c t o r  w a s  appl ied.  An exact acce lera t ion  h i s to ry  was used t o  
check the  v a l i d i t y  of the  e n t i r e  procedure. It w a s  found t h a t  t he  densi ty ,  
pressure,  and scale  height of t h e  akmosphere defined by machine solut ion 
agreed exact ly  with t h e  model atmosphere used i n  obtaining the  accelerat ion 
h i s to ry  o r ig ina l ly .  

The f i r s t  r e s u l t s  t o  be discussed are  those obtained with s ingle  range 
instruments designed t o  measure any accelerat ion t h a t  might be encountered f o r  
t h e  chosen conditions.  For t h i s  ana lys i s ,  t h e  maximum accelerat ion i s  encoun- 
t e r ed  enter ing the  minimum scale  height atmosphere with an en t ry  angle of 90' 
and the  minimum accelerat ion corresponds t o  enter ing t h e  maximum scale height 
atmosphere with an en t ry  angle of 50'. The values of the maximum and minimum 
possible  resu l tan t  acce lera t ions  are  438 and 112 times t h e  sea- level  grav i ty  
of Mars, respect ively.  f o r  the  instruments 
allowed a s m a l l  margin i n  t h e  operating ranges of t he  instruments. It i s  
f u r t h e r  assumed t h a t  t h e  e r r o r  i n  the  resu l tan t  acce lera t ion  i s  constant a t  
0 . 1  percent of the maximum value measurable by any one of t he  instruments. To 
prepare the  accelerometer records simulating en t ry  i n t o  the  maximum and mini- 
mum scale height atmospheres w i t h  en t ry  angles of 50' and goo, the  e r r o r  of 
0.45 go w a s  subtracted from the  respective exact time h i s t o r i e s .  The va r i a -  
t i o n s  of densi ty  with a l t i t u d e  defined by means of these accelerat ion h i s t o -  
r i e s  a re  shown i n  f igure  2 where they are  compared t o  t h e  exact atmospheres. 

Choosing a range of 0 t o  450 go 

The r e s u l t s  of f i gu re  2 show t h a t  t he  de f in i t i on  of the  minimum scale 
height atmosphere i s  very good over most of t h e  a l t i t u d e  range regardless  of 
t he  en t ry  angle .  In  con t r a s t ,  t he  de f in i t i on  of t he  maximum scale  height 
atmosphere i s  very poor over the  e n t i r e  a l t i t u d e  range whether the  entry angle 
i s  50° or 90'. The s i t u a t i o n  shown i n  f igure  2 can be improved considerably 
i n  a number of ways. Some of these w i l l  be discussed herein but f i r s t  it i s  
necessary t o  understand how the  e r r o r s  i n  dens i ty  s t ruc ture  resu l t ing  from 
measurement e r ro r s  accumulate t o  t he  extent shown i n  f igu re  2 .  

Errors i n  defining atmosphere densi ty  s t ruc ture  can be a t t r i bu ted  t o  
three  sources, each a r e s u l t  of the  e r ro r s  i n  measured accelerat ions and each 
r e l a t ed  by the  common var iab le ,  t ime. F i r s t ,  there  i s  t h e  e r r o r  i n  measured 
acce lera t ion .  Inspection of equation (12)  shows t h a t  t he  e r r o r  i n  density at 
any time i s  d i r e c t l y  proport ional  t o  the  e r r o r  i n  r e su l t an t  accelerat ion a t  
t h a t  t ime. Second, t he re  i s  an e r r o r  i n  calculated vehicle  speed at each 
in s t an t  of t ime.  The dens i ty  e r r o r  i s  inversely proport ional  t o  the  square of 
t he  e r r o r  i n  speed as shown by equation ( 1 2 ) .  
with time and i s  a d i r e c t  r e s u l t  of  in tegra t ing  an erroneous accelerat ion 
measurement. It i s  presumed t h a t  t h e  speed at en t ry  i s  known exact ly  so tha t  
t h e  e r r o r  i n  speed i s  zero at time zero and increases  t o  a maximum a t  t he  
f i n a l  t ime. The t h i r d  source of e r r o r  a r i s e s  from having t o  r e l a t e  a l t i t u d e  
t o  time i n  order t o  provide t h e  link between a l t i t u d e  and dens i ty .  This e r r o r  
i n  a l t i t u d e  r e s u l t s  from in tegra t ing  the  time h i s to ry  of speed, which i t s e l f  
i s  not accurate ,  t o  obtain t h e  t o t a l  change i n  a l t i t u d e  h i s to ry  during e n t r y .  
The time a t  which a l t i t u d e  i s  zero i s  defined by impact of t he  probe with t h e  

The speed e r r o r  i s  cumulative 
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planet surface.  In e f f e c t ,  the  e r r o r  i n  a l t i t u d e  i s  a maximum at  t h e  time of 
en t ry  and it decreases t o  zero a t  the  time of impact. 

The manner i n  which the magnitudes of t h e  e r r o r s  i n  resu l tan t  accelera-  
t i o n ,  speed, and a l t i t u d e  vary with time i s  shown i n  f igure  3 .  In t h i s  i l l u s -  
t r a t i o n ,  the  e r r o r s  obtained by f ly ing  t h e  most favorable t r a j e c t o r y  (minimum 
scale height atmosphere, 8E = 90') are  compared t o  the  e r r o r s  obtained by f l y -  
ing the l e a s t  favorable t r a j e c t o r y  (maximum sca le  height atmosphere, 8E = 500). 
It i s  immediately evident from these r e s u l t s  t h a t  t h e  large difference i n  
f l i g h t  time between t h e  two t r a j e c t o r i e s  i s  a major f a c t o r  t o  consider.  The 
time t o  complete the  en t ry  i n t o  the  maximum scale  height atmosphere with t h e  
smaller path angle i s  grea te r  by more than an order of magnitude than t h e  time 
t o  complete t h e  en t ry  i n t o  the  minimum scale  height atmosphere with t h e  l a r g e r  
path angle.  The r e s u l t a n t  accelerat ion i s  s m a l l  during most of the  time of 
the  longer t r a j e c t o r y  so t h a t  the assumed 0.45 go e r r o r  i n  i t s  measured value 
i s  a large f r a c t i o n  of the  t o t a l .  The e f f e c t s  on speed and a l t i t u d e  determi- 
nation due t o  in tegra t ing  t h i s  large e r r o r  over a long period of t i m e  are 
c l e a r l y  evident i n  f i g u r e  3 .  

Two methods which can be used t o  improve t h e  accuracy i n  defining atmos- 
phere a re  immediately evident .  Ei ther  the  period of time over which large 
e r r o r s  i n  accelerat ion measurements must be integrated can be shortened or t h e  
accuracy of the  accelerat ion measurements can be improved. The leve ls  of 
improvement t h a t  can be expected from each of these methods w i l l  be 
i l l u s t r a t e d  using t h e  l e a s t  favorable t r a j e c t o r y  as an example. 

Consider f i rs t  t h e  s i t u a t i o n  i n  which t h e  time period of the problem i s  
reduced. In t h i s  case it i s  assumed t h a t  a l t i t u d e  can be deduced by some 
other means a f t e r  t h e  speed of the probe i s  reduced by aerodynamic drag t o  
r e l a t i v e l y  low va lues .  For purposes of demonstration it w i l l  be assumed t h a t  
the  a l t i t u d e  i s  known at  the  respective times when t h e  speed i s  500, 750, and 
1000 f t / s e c .  
80.0, and 67.2 seconds, respect ively.  
t h e  complete t r a j e c t o r y  from entry t o  impact of 369.6 seconds. The var ia t ions  
of atmosphere densi ty  with a l t i t u d e  computed f o r  these conditions a re  shown i n  
f igure  4. 
phere def in i t ion  over t h a t  obtainable by relying so le ly  upon accelerometer 
information throughout the  e n t i r e  t r a j e c t o r y .  It i s  recal led t h a t  i n  the  
r e s u l t s  of f igure  4 t h e  a l t i t u d e  w a s  assumed known exact ly  a t  each of the  
chosen speeds. The e f f e c t  of inaccuracies i n  t h e  knowledge of these a l t i t u d e s  
w a s  invest igated.  
curves i n  f igure  4 t o  t r a n s l a t e  i n  a l t i t u d e  by t h e  mount of the assumed 
uncertainty.  A possible  method f o r  obtaining t h e  a l t i t u d e  a t  the time when 
the  speed i s  a c e r t a i n  low value cons is t s  i n  measuring the speed with a con- 
vent ional  speed ind ica tor  during the subsonic port ion of the  f l i g h t  p r i o r  t o  
impact and then in tegra t ing  t o  get  a l t i t u d e  change. O f  course, other tech-  
niques such as d i r e c t l y  measuring ambient pressure and temperature could be 
used t o  define the  atmosphere s t ructure  at a l t i t u d e s  below those where t h e  
accelerometer method i s  used. Further invest igat ion of these methods has not 
be made. 

The values of time corresponding t o  these speeds a re  116.8, 
These can be compared t o  the  time f o r  

It i s  evident t h a t  t h i s  i s  a powerful method f o r  improving atmos- 

It w a s  found t h a t  the  e f f e c t  w a s  e s s e n t i a l l y  t o  cause t h e  
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Consider now the  p o s s i b i l i t y  of improving atmosphere de f in i t i on  by 
increasing the  accuracy of t he  measured acce lera t ions .  The r e s u l t s  of f i g -  
ure 3 showed t h a t  t he  e r r o r s  i n  measured accelerat ions could be large over a 
considerable port ion of the  t r a j e c t o r y  i f  t he  instruments were designed t o  
measure over t h e  complete range of expected values .  Since the vehicle experi-  
ences low values of accelerat ion most of t he  time i n  a long t r a j ec to ry ,  it i s  
reasonable t o  consider using two d i f f e r e n t  s e t s  of instruments; one designed 
t o  measure over t h e  e n t i r e  range of expected values and one designed t o  meas- 
ure  over a more l imited range. If the  accuracy of each of t h e  s e t s  of i n s t r u -  
ments i s  given as a specif ied percentage of t he  respect ive maximum values 
measurable, t he  net  r e s u l t  i s  increased accuracy over t he  s ing le  range system 
i n  terms of percentage of l o c a l  va lues .  It can be reasoned on the  b a s i s  of 
t he  r e s u l t s  of f i gu re  3 that  f o r  each time h i s to ry  of accelerat ion there  
e x i s t s  an optimum range over which the  low range system should be designed t o  
operate .  The f l i g h t  speed, as determined from in tegra ted  accelerat ion data ,  
can never be known more accurately than it i s  known at  the  beginning of the  
in t eg ra t ion .  Thus, if the  low range system i s  designed t o  operate over a 
range of very s m a l l  acce le ra t ions ,  then the  e r r o r  i n  speed i s  already qui te  
large before the  p o t e n t i a l  benef i t s  of  the  dual  range system can be rea l ized .  
On the  other  hand, i f  t he  low range system i s  designed t o  operate over t o o  
large a range of accelerat ions,  then the  speed e r r o r  would be s m a l l  at t he  
time of switching from the  high range system t o  t h e  l o w  range system but t he  
e r r o r s  i n  measured accelerat ions would be l a rge r  over a longer period of t ime. 
The predicted va r i a t ions  of atmosphere densi ty  with a l t i t u d e  obtainable with 
dual  accelerometer systems with severa l  d i f f e ren t  ranges f o r  t h e  low range 
system are  compared i n  f igu re  5 t o  t h a t  previously shown f o r  t he  s ingle  range 
system. In  each case the  values measured by t h e  instruments a re  assumed t o  be 
accurate t o  a constant 0 . 1  percent of t he  maximum value measurable by the  
instrument . 

The r e s u l t s  of f igure  5 show t h a t  t he  dual  system provides a much b e t t e r  
de f in i t i on  of the densi ty  s t ruc ture  than does the  s ingle  range system. Fur- 
thermore, t he  r e s u l t s  show t h a t  t he  optimum range f o r  t he  l o w  range accelerom- 
e t e r s  i s  somewhere between 0-4.5 go and 0-112 go 
range of 0-112 go was chosen because the  maximum acc lera t ion  experienced dur- 
ing en t ry  in to  the  maximum scale  height atmosphere with an en t ry  angle of 50° 
i s  112 go. Although the  dua l  system i s  ce r t a in ly  b e t t e r  than t h e  s ing le  sys- 
tem, comparisons of t he  r e s u l t s  of f i gu re  5 w i t h  those of f igure  4 show tha t  
changing from the  s ingle  range system t o  the  dual  system i s  not so e f f ec t ive  
as using a s ingle  range system i n  conjunction with some other  method f o r  
def ining the  atmosphere densi ty  s t ruc ture  a f t e r  t h e  speed i s  reduced t o  
subsonic values . 

f o r  t h i s  example. The 

The ambient pressure i n  the  atmosphere depends on the  integrated product 
of l o c a l  grav i ty ,  densi ty ,  speed, and s ine of t h e  path angle over t he  t r a j e c -  
t o r y  ( e q .  ( 5 ) ) .  The computed va r i a t ions  of pressure with a l t i t u d e  f o r  both 
the  minimum and maximum scale  height atmospheres a re  compared t o  exact r e s u l t s  
i n  f igu re  6 .  The ca lcu la t ions  were made using t h e  previously discussed s ingle  
range accelerometer system f o r  t he  port ions of t h e  t r a j e c t o r y  where the  exact 
speed w a s  g rea te r  than 750 f t / s e c .  
atmosphere obtained from data f o r  a s teep  90' ent ry  show t h e  bes t  t h a t  can be 

The r e s u l t s  f o r  the  minimum sca le  height 



expected from t h i s  method, while the  r e s u l t s  f o r  the  maximum scale  height 
atmosphere obtained from da ta  f o r  a 50' ent ry  a re  indicat ive of the  poorest 
d e f i n i t i o n  of pressure s t ruc ture  using t h i s  system. I n  both cases the  atmos- 
phere pressure i s  defined reasonably w e l l  over large ranges of a l t i t u d e .  

CONCLUDING FU3MARKS 

A de ta i led  procedure has been devised f o r  obtaining densi ty  and pressure 
s t ruc ture  of a planetary atmosphere from measurements of accelerat ions experi-  
enced by a vehicle  making an uncontrolled en t ry  i n t o  the  atmosphere. It has 
been shown t h a t  t h e  need f o r  a complex method of determining the  time h i s t o r y  
of vehicle a t t i t u d e  from accelerat ion d a t a  and the  attendant source of poten- 
t i a l l y  large e r r o r s  can be eliminated completely i f  the  accelerometers a re  
car r ied  aboard a spherical ly  shaped vehic le .  

Results of an e r r o r  analysis ,  i n  which estimates were made of the  
accuracy t o  which extreme model atmospheres f o r  Mars could be defined, showed 
t h a t  e i t h e r  the  accelerat ions must be measured very accurately or the  time 
period over which large measurement e r r o r s  a re  integrated must be kept shor t .  
It i s  suggested t h a t  the  l a t t e r  can be accomplished by t h e  method involving 
accelerat ion measurements f o r  the  high-speed par t  of the  t r a j e c t o r y  only.  
Further e f f o r t  i s  needed t o  examine various methods which could be used t o  
define atmosphere s t ruc ture  over the  port ion of t h e  t r a j e c t o r y  where f l i g h t  
speed and hence accelerat ions a re  r e l a t i v e l y  low. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  Nov. 23, 1964 
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Figure 2.- Extreme model atmospheres fo r  Mars ca lcu la ted  from accelerometer 
data simulating t h a t  obtainable from a s ing le  range system accurate t o  
0.1 percent of t h e  maximum value measurable; acce le ra t ion  e r ror  = 0.45 go; 
m/C$ = 0.25 s lug/f t2;  VE = 26,000 f t / s ec .  
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r a t e  t o  0 .1  percent of maximum measurable value; acce lera t ion  e r ro r  = o.45go; 
m/C+ = 0.25 s lug/f t2;  V, = 26,000 f t / s ec .  
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